
1089

Planning with Continuous Resources for Agent Teams

Janusz Marecki
IBM T.J. Watson Research Center
1101 Kirchawan Road, Route 134

Yorktown Heights, NY 10598
marecki@us.ibm.com

Milind Tambe
University of Southern California

3737 Watt Way, Powell Hall of Engineering 410
Los Angeles, CA 90089-0781

tambe@usc.edu

ABSTRACT

Many problems of multiagent planning under uncertainty require
distributed reasoning with continuous resources and resource lim-
its. Decentralized Markov Decision Problems (Dec-MDPs) are
well-suited to address such problems, but unfortunately, prior Dec-
MDP approaches either discretize resources at the expense of speed
and quality guarantees, or avoid discretization only by limiting agents’
action choices or interactions (e.g. assumption of transition inde-
pendence). To address these shortcomings, this paper proposes M-
DPFP, a novel algorithm for planning with continuous resources
for agent teams, with three key features: (i) it maintains the agent
team interaction graph to identify and prune the suboptimal policies
and to allow the agents to be transition dependent, (ii) it operates
in a continuous space of probability functions to provide the error
bound on the solution quality and finally (iii) it focuses the search
for policies on the most relevant parts of this search space to allow
for a systematic trade-off of solution quality for speed. Our experi-
ments show that M-DPFP finds high quality solutions and exhibits
superior performance when compared with a discretization-based
approach. We also show that M-DPFP is applicable to solving
problems that are beyond the scope of existing approaches.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms

Algorithms, Theory

Keywords

Multi-agent systems, Decentralized Markov Decision Process, Con-
tinuous Resources

1. INTRODUCTION
Effective coordination of agents acting as a team in an uncertain
environment has recently become a very active area of research
with potential applications ranging from coordination of unmanned
planetary exploration rovers [2] to coordination of agents during a
hostage rescue mission [13]. Unfortunately, finding optimal poli-
cies for agents acting in such domains is a difficult problem, es-
pecially when agents’ actions are contingent on the availability of
Cite as: Planning with Continuous Resources for Agent Teams, Janusz
Marecki and Milind Tambe, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

continuous resources such as time or energy. A predominant ap-
proach for solving such planning problems is to discretize resource
levels that results in a finite number number of candidate policies
to consider. It is then possible to find the optimal policies by cast-
ing the planning problem as decentralized MDPs or POMDPs [1],
[2], [4], [14], [15], [16]. However, discretization of continuous re-
source levels leads to policies that are defined for only a handful of
all possible resource levels and hence, invalidates formal solution
quality guarantees.
To preserve the formal solution quality guarantees the candidate al-
gorithms must not discretize resources and rather operate directly
on the continuous state-spaces spanning continuous resources. How-
ever, extending existing single-agent discretization-free algorithms
[7], [8], [9], [11], [12] to multi-agent settings is a non-trivial task,
mainly due to the lack of global state knowledge in multi-agent sys-
tems. To date, only few algorithms have overcome this problem,
yet, at a cost of introducing new restrictive assumptions: Gener-
alized Semi MDP [18] assumes unlimited resources, Value Func-
tion Propagation [10]—which only finds locally optimal policies—
assumes that agents already know the ordering of their actions and
must only decide when to start them and finally, Transition Inde-
pendent Decentralized Hybrid MDP [3] assumes that agents are
transition independent (i.e., the outcomes of agent actions do not
affect the action choice of other agents).
To remedy these shortcomings, this paper introduces Multiagent
Dynamic Probability Function Propagation (M-DPFP), a new al-
gorithm for planning with continuous resources for transition de-
pendent agent teams. Precisely, M-DPFP solves the planning prob-
lems modeled as Continuous Resource Decentralized MDPs (CR-
DEC-MDPs [10]), a framework that extends an existing frame-
work [5] for planning with discrete resources for agent teams by
allowing resources to take real-values. In solving CR-DEC-MDPs
near-optimally M-DPFP relies on a novel combination of three key
ideas: (i) it first constructs the agent team interaction graph to
identify and prune the suboptimal policies early on, based on the
analysis of suboptimal action sequences, (ii) it formulates the plan-
ning problem in the dual space of cumulative distribution functions
[11], to avoid the discretization of resource levels and finally (iii)
it groups similar regions of the dual search space (regions that cor-
respond to similar agent observations) and focuses the search for
the optimal solution to the dual problem on the states of that dual
search space that are most likely to be encountered, to allow for a
systematic trade-off of solution quality for speed. We begin by in-
troducing our planning problems of interest and recalling the CR-
DEC-MDP framework used to represent them formally.Cite as: Planning with Continuous Resources for Agent Teams, Janusz

Marecki, Milind Tambe, Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. 1089–1096
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1090

2. BACKGROUND

2.1 Problem Statement
Of general interest to the multiagent planning community are de-
cision theoretic problems that assume agents with methods to be
executed, as commonly proposed in the literature [1], [5], [10] and
inspired by the DARPA Coordinators effort [13], which in turn is
based on the popular GPGP paradigm [6]. Formally, such plan-
ning problems assume a team of N agents deployed on a mission
to perform methods from the set M = {m1, ..., mK}. Each agent
n is assigned to a set Mn of methods, such that {Mn}N

n=1 is a
partitioning of M . Furthermore, each agent can be executing only
one method at a time and each method can be executed only once.
We assume a single, continuous resource (e.g., time): The initial re-
source level (e.g. starting time) of agent n is ln,0 and the probability
that the execution of method mk will require x amount of resource
is pk(x) where pk is a continuous probability density function. The
outcome of the execution of methods is contingent on the satisfia-
bility of resource precedence and resource limit constraints defined
as follows:
Resource precedence constraints grouped in set C≺ impose a par-
tial ordering of method execution. Precisely, a constraint 〈i, j〉 ∈
C≺ between methods mi and mj (of possibly different agents) im-
poses two necessary (but not sufficient) conditions for method mj

to be executed successfully: (i) method mi must be executed suc-
cessfully and (ii) if the execution of method mi finished with l
amount of resource left, the execution of method mj must start
with less than l resource left (e.g., if time is a resource, the exe-
cution of mj cannot start before the execution of mi is finished).
We often say that method mj is enabled at resource level l if all
methods mi such that 〈i, j〉 ∈ C≺ have been successfully fin-
ished with more than l resources left (e.g. if time is a resource,
method mj is enabled at time t if the execution of all methods mi

such that 〈i, j〉 ∈ C≺ has been successfully finished before time
t). Agents learn the status of resource precedence constraints post-
factum: Given constraint 〈i, j〉 ∈ C≺, the agent that owns method
mj will start executing it without knowing whether mi has been
completed (by some other agent). Only after it finishes the execu-
tion of mj (successfully or unsuccessfully) it will learn if mi has
been executed successfully or unsuccessfully.1

Resource limit constraints grouped in set C[] restrict agent re-
source levels during method execution. Precisely, a resource limit
constraint 〈i, l′, l′′〉 ∈ C[] for a method mi imposes that resource
levels of an agent executing method mi must stay within range
[l′, l′′] (e.g., if time is a resource, mi can only be executed in time
interval [l′, l′′]). We distinguish Δ = max{l′′ : 〈i, l′, l′′〉 ∈ C[]} to
be the maximum resource level for a given planning problem (e.g.
if time is a resource, Δ is the mission deadline).
A reward ri for the execution of method mi is earned when: (i)
resource limit constraints are not violated during the execution of
method mi and (ii) method mi is enabled when its execution starts.
As long as condition (i) holds, the execution of method mi pro-
ceeds normally, regardless of whether condition (ii) holds or not.
Yet, as soon as condition (i) stops to hold (agent resource level
drops too low) the execution of method mi is interrupted, mi is
considered to be executed unsuccessfully and reward ri is not earned.
The problem is to find a team policy that maximizes the expectation
over the sum of rewards earned by the agents.
An example of such a planning problem is shown in Fig.1. Here,
1In this paper we focus on time as a resource, as temporal reason-
ing is clearly one of the most important paradigms in multi-agent
planning. However, our techniques also apply to other resources
such as energy, temperature, space etc.

resource = time, agent team consists of agents 1 and 2 assigned to
methods m1, m2, m3 and m4, m5, m6 respectively and resource
precedence constraints (dashed arrows) read: “method m4 will fail
if method m1 has not been completed before m4 starts" and “m2

will fail if m5 has not been completed before m2 starts". (Re-
source limit constraints are not shown.) Agents need to coordinate
their efforts to maximize the expectation over the sum of their local
rewards. For example, if r1 � r3 � r4, agent 1 might still want
to consider first executing method m1 (rather than m3) to enable
agent 2 to execute its method m4 before time Δ, to earn reward
r4.

Methods
of agent 1

m1

m2

m3

m4

m5

m6

enables

enables
Methods

of agent 2

Figure 1: Example domain

2.2 CR-DEC-MDP Framework
The CR-DEC-MDP framework [10] for modeling the planning prob-
lems discussed above is defined as follows:

DEFINITION 1. Execution event e = 〈i, l1, l2, q〉 represents
the execution of method mi ∈ Mn with outcome q ∈ {0, 1} (0 =
unsuccessful; 1 = successful), during which the resource level of
agent n dropped from l1 to l2.

DEFINITION 2. CR-DEC-MDP for a team of N agents is a set
{MDPn}n∈N where MDPn = 〈Sn,An,Pn,Rn〉 is a Markov
decision processes of agent n defined as follows:

• Sn is the set of states of agent n and s = (en,0, e1, ..., ek) ∈
Sn is a sequence of execution events. Execution event en,0 =
〈0, ln,0, ln,0, 0〉 is used solely to encode the initial resource
level ln,0 of agent n whereas execution events e1, ..., ek cor-
respond to methods that the agent has actually executed. The
agent’s starting state is then simply sn,0 = (en,0).

• An is the set of actions of agent n and A(s) ⊂ An is the
set of methods that the agent can start executing in state s.
Because methods can be executed only once, A(s) = Mn \
{mi : 〈i, l1, l2, q〉 ∈ s}. Additionally, the agent can choose
in state s to remain idle and allow its resource level to drop
by the controllable amount δ.

• Pn is the state-to-state transition function of agent n that de-
pends not only on the current state of agent n, but also on
the current state of other agents. When agent n is in state
s = (..., 〈i, l1, l2, q〉) it can either choose to delay the execu-
tion of its next action until its resource level drops by a con-
trollable amount δ, which results in a transition to state s′ =
(..., 〈i, l1, l2, q〉, 〈0, l2, l2−δ, 0〉) or to execute a method mj ∈
A(s). In the latter case the agent will transition to state
s′ = (..., 〈i, l1, l2, q〉, 〈j, l2, l2 − x, qj〉) with probability
pj(x) where x is the amount of resource consumed during
the execution of method mj . The result qj of the execution
of method mj is contingent upon the satisfiability of resource
limit constraints and resource precedence constraints. Pre-
cisely, qj = 1 if and only if (i) the resource levels of the
agent remain within the admissible range during the execu-
tion of method mj , i.e., there exists a resource limit con-
straint 〈j, l′, l′′〉 ∈ C[] such that l′ ≥ l2 ≥ l2 − x ≥ l′′

and (ii) method mj is enabled when it is started, i.e., the ex-
ecution of all methods mk ∈ M such that 〈k, j〉 ∈ C≺ has
finished successfully with at least l2 resources left. (In other
words, condition (ii) states that for all methods mk ∈ Mn′

Janusz Marecki, Milind Tambe • Planning with Continuous Resources for Agent Teams

1091

such that 〈k, j〉 ∈ C≺, the current state of agent n′ contains
event e = 〈k, l′, l′′, 1〉 such that l′′ ≥ l2.)
Finally, Pn must be modified accordingly to reflect that the
execution of method mj is automatically interrupted when
the agent resource level drops too low, i.e., below value l′′ for
some admissible resource range constraint 〈j, l′, l′′〉 ∈ C[].
Thus, the probability of interruption, i.e., the probability that
the agent will utilize x ≥ l2 − l′′ amount of resource for the
execution of method mj is 1 − R l2−l′′

0
pj(y)dy.

• Rn is the reward function of agent n. Upon transitioning to
state s′ = (..., 〈j, l2, l2 − x, qj〉) the agent receives reward
qj · rj .

Given local policies πn of agents n = 1, .., N the joint policy is
a vector π = (π1, ..., πn). The value of policy π is defined as
V (π) :=

PN
n=1 V πn(sn,0) where V πn(sn,0) is the total expected

reward of policy πn of agent n followed from state sn,0. The opti-
mal policy π∗ = (π∗

1 , ..., π∗
N) then maximizes V (π).

For explanation purposes, in the following we use time as a re-
source. It then follows that time values range from 0 to Δ, execu-
tion of methods causes time to increase, resource limit constraints
are method execution time windows and resource precedence con-
straints specify that the execution of one method can only start after
another methods has been successfully executed.

2.3 DPFP Algorithm
The M-DPFP algorithm builds upon the highly efficient DPFP al-
gorithm [11] for solving single agent continuous resource MDPs.
DPFP’s main idea is to perform a forward search for policies in a
search space referred to as the dual space of cumulative distribution
functions. The use of that search space allows DPFP to estimate
the likelihood of reaching different regions of the state space and
then utilize these likelihoods to focus the policy generation effort
on more relevant regions of the state space, while still providing
guarantees on the solution quality. Precisely, DPFP assumes the
following: Φ is the set of all possible sequences φ of actions that
the agent can execute from its starting state; Aφ is the set of ac-
tions that the agent can execute after completing the actions from
φ; F π

φ (t) is the probability that actions from φ will be completed
before time t and F π

φ (a)(t) is the probability that actions from φ
will be completed and the next action a ∈ Aφ will be started be-
fore time t, when the agent follows policy π from its starting state.
(F π

φ , F π
φ (s) are cumulative distribution functions over t ∈ [0, Δ].)

F π = {F π
φ , F π

φ (a) : φ ∈ Φ; a ∈ Aφ} is then the solution to the
dual problem that corresponds to policy π and F ∗ is the optimal so-
lution (that corresponds to the optimal policy π∗). The correspon-
dence is reflexive: A deterministic policy πφ(t) for the action se-
quence φ completed at time t can be extracted from F π by compar-
ing the rate of increase of functions {F π

φ (a)}a∈Aφ , i.e., πφ(t) =
arg maxa∈Aφ{limε→0+ F π

φ (a)(t + ε) − F π
φ (a)(t)}.

DPFP does not exactly find the optimal policy π∗; instead, it finds
an approximate policy bπ∗ that is arbitrarily close to π∗. Precisely,
it first projects with granularity κ the search space X onto its finite
counterpart bX: The projection consists in converting each solution
F ∈ X to a solution bF ∈ bX . The conversion itself consists in
approximating each cumulative distribution function Fφ ∈ F with
a function bFφ ∈ bF given by: bFφ(t) = 	Fφ(t)/κ
 ∗ κ. (Notice
that bFφ ∈ bF is a stair function with stairs of fixed height κ.) The
immediate effect of the projection is that, assuming that the start-
ing state of the agent is known, bX contains only a finite number
of elements. In other words, DPFP can then iterate over differ-
ent elements bF ∈ bX (i.e., iterate over all corresponding policiesbπ) to find the best approximate policy bπ∗. Precisely, for each so-

lution bF found during that iteration DPFP calculates the value ofbF (the value of a policy that corresponds to bF) with the formula
V (bF) =

P
φ∈Φ

bFφ(Δ) · rφ where rφ is the reward for executing
the last action from sequence φ. In particular, DPFP identifies the
optimal solution bF ∗ ∈ bX that maximizes V (bF) and then uses bF ∗

to extract the corresponding policy bπ∗. Although bπ∗ �= π∗, the er-
ror |V (bF ∗)− V (F ∗)| of bπ∗ is provably proportional to κ.
The key contributor to the superior efficiency of DPFP is that it ex-
ploits the loss of probability mass of cumulative distribution func-
tions. In essence, when the probability of reaching certain regions
of the state-space is below a given threshold, the expected qual-
ity loss for executing suboptimal actions in these regions can be
bounded, and DPFP can tradeoff this quality loss for efficiency.

3. M-DPFP APPROACH
We now show that DPFP’s idea to use the dual space of cumula-
tive distribution functions for planning with continuous resources
in single agent systems is applicable to solving the planning prob-
lems modeled as CR-DEC-MDPs. In essence, planning with con-
tinuous resources in single or multiagent systems is similar in that it
requires the planner to reason about agents whose actions are con-
ditioned upon resource availability. However, problems modeled as
CR-DEC-MDPs are fundamentally more complex, as they involve
multiple agents, each with its local state knowledge, required to act
as a team to perform a set of tasks. In particular, agents must act de-
spite resource precedence constraints and without being informed
at every instance about the status of execution of other team mem-
bers; their only information about other agents inferred from the
success or failure of execution of dependent tasks.
To address the challenges that these requirements pose we develop
M-DPFP, a new algorithm for solving CR-DEC-MDPs. M-DPFP
borrows from DPFP in that it too operates on the dual space of cu-
mulative distribution functions. Yet, M-DPFP fundamentally dif-
fers from DPFP in that M-DPFP’s search for policies in the dual
space respects the interactions between the agents. We explain the
key novelties of M-DPFP in three steps: First, we introduce the
agent team interaction graph to capture the interactions between
the agents and to filter them accordingly to prune out the subopti-
mal policies. Next, we revisit the dual space of cumulative distri-
bution functions: we extend it to multiple agents and formulate the
multiagent dual problem. Finally, we show how to use the agent
team interaction graph to build the joint policies and find the opti-
mal solution to the multiagent dual problem.

3.1 Agent Team Interaction Graph
At a basic level, the agent team interaction graph: (i) provides a
compact representation of the interactions between the agents, (ii)
filters out the agent interactions associated with suboptimal joint
policies and finally, (iii) arranges subsequent agent decisions in a
priority list, to allow the centralized planner to construct the joint
policies one-agent-decision-at-a-time, to find the solution to the
multiagent dual problem. The agent team interaction graph is de-
fined as follows:

DEFINITION 3. Action sequence is a vector φ = (m1, ..., mk)
of methods executed by an agent. Also, Φn is a set of all possible
action sequences φ of agent n and Φ =

S
n Φn is a set of all pos-

sible action sequences of all agents.2

2For convenience, (φ|m) denotes the action sequence that is a con-
catenation of action sequence φ with method m and (..., m) de-
notes the action sequence that terminates with method m.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1092

4

4,5

4,6 4,6,5

5

5,4

5,6 5,6,4

6

6,5 6,5,4

1

1,2 1,2,3

2

2,1 2,1,3

3

3,1 3,1,2

6,4 6,4,5

4,5,6

5,4,6

1,3

2,3

3,2 3,2,1

2,3,1

1,3,2

Policy tree of agent 1

Policy tree of agent 2

1

2

3
4

5

6

7

8

9

10 11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

Starting
state of
agent 1

Starting
state of
agent 2

Figure 2: Agent Team Interaction Graph: Solid arrows rep-

resents agent actions, white boxes represent action sequences,

dashed arrows represent agent interactions and black labels de-

note positions on the action sequences list L.

DEFINITION 4. Agent team interaction graph G = (Φ, C)
consists of a set Φ of nodes and a set C = Cl ∪ Cnl of local and
non-local arcs. Local arcs Cl = {(φ, (φ|m)) : φ ∈ Φn ∧ m ∈
Mn ∧ m �∈ φ} link the action sequences of the same agent and
represent the progression of its actions whereas the non-local arcs
Cnl = {((φi|mi), (φj |mj)) : φi ∈ Φi ∧ mi ∈ Mi ∧ φj ∈
Φj∧mj ∈ Mj∧〈i, j〉 ∈ C≺} link the action sequences of different
agents and represent the agent interactions.

The first function of the agent team interaction graph is to repre-
sent the agent interactions compactly, i.e., with time and method
execution outcomes abstracted out. Consider the graph in Fig.2 for
the domain in Fig.1. Here, agent actions (solid arrows) link the
agent action sequences (white boxes). For example, agent 1 can
perform action “execute method m1” to transition from (m2) to
(m2, m1). Agent interactions (dashed arrows) are the non-local
effects of agent actions resulting from the satisfiability of the re-
source precedence constraints. For example, resource precedence
constraint 〈1, 4〉 = “m4 will fail if m1 has not been completed be-
fore m4 starts” translates into multiple non-local effects: Each non-
local effect points from the action sequence φ = (..., m1) to the
action sequence φ′ = (..., m4) because the success or failure of
the execution of method m1 when agent 1 executes methods from
sequence φ affects the outcome of execution of method m4 when
agent 2 executes methods from sequence φ′.
The second function of the agent team interaction graph is to speed
up the search for policies (explained later) by filtering out the agent
interactions (dashed arrows) that can only take place if the agents
are executing suboptimal policies. In essence, the benefit of fil-
tering is that, with some dashed arrows removed, parts of the agent
team interaction graph that belong to different agents will hopefully
become disconnected and hence, corresponding parts of their local
policies could be optimized independently. For example, consider
a policy according to which agent 1 starts by executing method m2

and agent 2 starts by executing method m4. This policy is clearly
suboptimal because, even if agents wait with the execution of their
methods, either m2 or m4 must fail. In the latter case, agent 1
waits with the execution of m2 whereas agent 2 immediately exe-
cutes method m4 (which fails) and then m5. An alternative policy

that dominates the previous policy is when agent 2 immediately
executes method m5, to enable method m2 earlier. Going farther
with the identification of suboptimal policies, if agent 1 starts by
executing method m2 and agent 2 executes methods m6, m4, m5

(in that order) the resulting behavior is also suboptimal as either m2

or m4 must fail (for the same reasons as just discussed). In general,
for methods m1A, m1B ∈ M1; m2A, m2B ∈ M2 and precedence
constraints 〈m1A, m2A〉; 〈m2B , m1B〉 ∈ C≺, the filtering of agent
interactions produced by suboptimal policies involves removing
from graph G all dashed arrows ((φ|m2B)(φ′|m1B)) where m2A ∈
φ and m1A �∈ φ′ and all dashed arrows ((φ′′|m1A)(φ′′′|m2A))
where m1B ∈ φ′′ and m2B �∈ φ′′′. (The filtering has already
been done in Fig.2, e.g., a dashed arrow from (m4, m5) to (m2)
has been removed.) The benefit of filtering is that some parts of
agents policies become independent and can be optimized indepen-
dently. For example, agent 1’s policies for sequences (m2, ...) are
no longer dependent on agent 2’s policies for sequences (m4, ...).
The final function of the agent team interaction graph is to arrange
the agent actions in a priority list, to allow the centralized planner
to build a joint policy in a forward fashion (and to iterate over these
policies to find the optimal policy as explained in Section 3.3). Nat-
urally, the planner starts constructing a joint policy by choosing the
methods (e.g. m2 and m6) that agents execute from their starting
states. The planner must then determine the times at which the ex-
ecution of m2 and m6 should start. m6 should be started as soon
as possible because m6 is always enabled. However, to determine
when the execution of m2 should start, the planner must first cal-
culate the probability of m2 being enabled by m5 over time. (If the
execution of m2 starts too early, m2 might still not be enabled by
m5; if it starts too late, m2 might not be completed before time Δ.)
Notice, that these probabilities are not yet known, as the planner has
not yet constructed a policy involving the execution of m5. Thus,
prior to determining when the execution of m2 should start, the
planner must fix the policy for action sequence (m6), i.e., choose
when and what method (either m4 or m5) to start executing once
the execution of m6 finishes. Thus, to ensure that the planner can
build a joint policy in a forward fashion, it must construct this pol-
icy from smaller building blocks (referred to as policies for action
sequences), added in a specific order L defined as follows:

DEFINITION 5. Action sequences list L is a topological sort-
ing of nodes of the agent team interaction graph G according to
which the action sequence φ appears on list L before the action
sequence φ′ if there exists a path in G from node φ to node φ′.

Note, that L is not unique as there can be many topological sorting
orderings of nodes of graph G with one such ordering shown in
Fig.2).

3.2 Multiagent Dual Problem
A fundamental difference between single-agent and multi-agent sys-
tems is that in single-agent systems an agent knows exactly the state
of the world whereas in multi-agent systems each agent can only es-
timate the state of the world from its local observation history. As
such, DPFP’s centralized planner did not have to consider observa-
tion histories in determining agent’s optimal actions. In contrast,
in CR-DEC-MDPs, the next action to be executed by an agent de-
pends on this agent’s observation histories, i.e., the times and the
outcomes of execution of agent action. For example, if agent 2 in
Fig.1 starts the execution of m4 at time t and finishes this execution
successfully, it learns that agent 1 has executed m1 successfully
before time t — this observation history allows agent 2 to make a
more informed decision as to what method to execute next, as it has

Janusz Marecki, Milind Tambe • Planning with Continuous Resources for Agent Teams

1093

a better understanding of the execution progress of agent 1. It is be-
cause of the need to keep track of agent’s observations that the dual
problem formulation, proposed in [11] for single agent planning
problems, must be fundamentally revised.
A key insight in M-DPFP’s formulation of the multiagent dual prob-
lem is that certain observation histories can be combined for the
planning purposes and that the error that this abstraction entails is
controllable. Precisely, M-DPFP’s approach in combining obser-
vation histories consists in removing from them the times, and only
preserving the outcomes of method execution. For example, two
observation histories: “m1 started at time t1 executed successfully
at time t2 followed by m2 started at time t3 executed unsuccess-
fully at time t” and “m1 started at time t4 executed successfully at
time t5 followed by m2 started at time t6 executed unsuccessfully
at time t” are indistinguishable for M-DPFP and both read “m1

executed successfully followed by m2 executed unsuccessfully at
time t”. Keeping in mind this abstraction scheme, we now develop
M-DPFP’s formulation of the multiagent dual problem. (The error
that this abstraction entails is bounded in Section 3.3.)
For an action sequence φ = (m1..., mk) ∈ Φn of agent n let
Q = (q1, ..., qk) be a corresponding sequence of outcomes of
method execution and Aφ,Q ⊂ An be the set of methods that agent
n can execute upon finishing the execution of methods from φ with
outcomes Q. (Pair φ, Q is referred to as an action-outcome se-
quence.) Also, let F πn

φ,Q(t) be the probability that agent n has com-
pleted the execution of methods from sequence φ with outcomes Q
before time t when following a policy πn. Upon completing at time
t the execution of the last method of φ the agent chooses a method
m ∈ Aφ,Q to be executed next, waits δπn

φ,Q(m)(t) amount of time
and then starts the execution of m. Thus, let F πn

φ,Q(m)(t) be the
probability that the agent has completed the execution of methods
from sequence φ with outcomes Q before time t and chose m to be
executed next (in the future) and eF πn

φ,Q(m)(t) be the probability that
the agent has completed the execution of methods from sequence
φ with outcomes Q and actually started the execution of method
m before time t. Notice, that F πn

φ,Q, F πn
φ,Q(m), eF πn

φ,Q(m) are cumu-
lative distribution functions over t ∈ [0, Δ]. In addition, for times
t when the agent does not wait with the execution of method m

(when δπn
φ,Q(m)(t) = 0) it holds that eF πn

φ,Q(m)(t) = F πn
φ,Q(m)(t);

otherwise, the agents is waiting and eF πn
φ,Q(m)(t) remains constant

as shown in Fig.3. In this context, a solution to the multiagent dual
problem is a set of functions F π := {F πn

φ,Q; F πn
φ,Q(m); δπn

φ,Q(m) for
all φ ∈ ∪nΦn; Q ∈ {0, 1}|φ|; m ∈ Aφ,Q}. The optimal solution
to the multiagent dual problem is denoted as F ∗.
We now formalize the multiagent dual problem. First, observe that
rewards ri are earned upon the successful execution of methods mi

from sequences φ = (..., mi) before time Δ3 and thus, the value
V (π) of the joint policy π = (π1, ..., πn) is:

V (π) =
NX

n=1

V πn(sn,0) =
X

φ=(...,mi)∈∪nΦn

Q=(...,qi)∈{0,1}|φ|

F π
φ,Q(Δ) · qi · ri (1)

The optimal solution F ∗ to the dual multiagent problem must then
maximize the right-hand-side of Equation (1). Furthermore, F ∗

must be an element of a set X = {F : (2), (3), (4)} where con-
straints (2), (3), (4) are defined for agents 1 ≤ n ≤ N , sequences

3For expository purposes we assume that agents start the execution
of their methods at time 0 and that method execution time windows
are [0, Δ]— extensions to different time windows are straightfor-
ward. Also, we simplify the notation by dropping n from F πn

φ,Q(Δ).

φ ∈ Φn and outcomes Q ∈ {0, 1}|φ| as follows:

F(),()(mn,0)(t) = 1 (2)

Fφ,Q(t) =
X

m∈Aφ,Q

Fφ,Q(m)(t) (3)

F(φ|m),(Q|q)(t) =

Z t

0

eFφ,Q(m)(t′) · pm(t − t′)

· E(φ|m),(Q|q)(t
′)dt′ (4)

Constraint (2) ensures that there is a method mn,0 ∈ Mn that agent
n will execute first. (For m ∈ Mn such that m �= mn,0 we au-
tomatically have F(),()(m)(t) = 0.) Constraint (3) can be seen
as the conservation of probability mass flow through the action-
outcome sequence φ, Q. Applicable only if Aφ,Q �= ∅ it ensures
that the cumulative distribution function Fφ,Q is split into cumula-
tive distribution functions Fφ,Q(m) for methods m ∈ Aφ,Q. Con-
straint (4) ensures the correct loss of probability mass from func-
tions eFφ,Q(m) to functions F(φ|m),(Q|q) caused by the execution
of method m. The constraint uses function pm(t) (the duration
of execution of method m, in relative time, given by the model)
and function E(φ|m),(Q|q)(t

′) (explained in Section 3.3), which for
q = 1 specifies the probability that method m has been enabled
before time t′ and for q = 0 specifies the probability that method
m has not been enabled before time t′, for a given action-outcome
sequence φ, Q. In this context, constraint (4) reads that the execu-
tion of method m will finish successfully at time t if it started at
time t′ with m being enabled and takes t − t′ time units to finish.
Consequently, we have explained all the necessary conditions for
F to belong to the set X .
Observe, that there can be many deterministic policies π∗ implied
by F ∗ found by M-DPFP. In essence, F ∗ cannot be solely used
to determine a unique π∗ as F ∗ does not contain enough infor-
mation about π∗— some of this information is irreversibly lost in
M-DPFP’s abstraction of observation histories. To alleviate this
shortcoming, M-DPFP provides a technique for constructing a de-
terministic policy bπ∗ from F ∗ that guarantees a a near-optimal be-
havior of the agent team (the error of bπ∗ is bounded in Section 3.3).bπ∗ is defined as follows: When agent n transitions at time t to state
s = (e1, ..., ek) ∈ Sn where ei = 〈mi, ∗, ∗, qi〉 for 1 ≤ i < k
and ek = 〈mk, ∗,t, qk〉 (∗ is an arbitrary time earlier than t), the
agent will wait δ∗φ,Q(m)(t) units of time and then execute method
π∗

φ,Q(t) := m, where m is given by:

m = arg max
m′∈Aφ,Q

{lim
ε→0

F
π∗

n
φ,Q(m′)(t + ε) − F

π∗
n

φ,Q(m′)(t)} (5)

We finally show how to derive δ∗φ,Q(m) used by bπ∗. Suppose that
the agent finished executing methods from action sequence φ with
outcomes Q at time t and, according to policy bπ∗, chose method
m ∈ Aφ,Q to be executed next. The calculation of the optimal
time t′ := t + δ∗φ,Q(m)(t) at which the agent should start exe-
cuting m takes into account the probability E(φ|m),(Q|1)(t

′) that
m will be enabled before time t′ and the probability Pm(t′) :=R Δ−t′
0

pm(x)dx that the execution of m, if started at time t′, will
finish before time Δ. Precisely, let Gφ,Q(m)(t) := E(φ|m),(Q|1)(t)·
Pm(t) be the probability that method m will be executed success-
fully if started at time t. The agent then starts the execution of
method m at times that correspond to the local maxima of Gφ,Q(m):

δ∗φ,Q(m)(t) =

j
t′ − t if ∃t′ > t : Gφ,Q(m)(t′) > Gφ,Q(m)(t)
0 otherwise. (6)

Functions δ∗φ,Q(m) and F ∗
φ,Q(m) can then be used to determine

functions eF ∗
φ,Q(m) as demonstrated in Fig.3.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1094

t10 2 3 4 5

1

t10 2 3 4 5

2

1˜Fπn

φ,Q(m)(t)
Fπn

φ,Q(m)(t)
δπn

φ,Q(m)(t)

Probability Waiting time

Figure 3: Using the agent waiting time function δπn
φ,Q(m) and

function F πn
φ,Q(m) to derive function eF πn

φ,Q(m).

3.3 Solving the Multiagent Dual Problem
In general, the multiagent dual problem is difficult to solve opti-
mally because, when method execution duration distributions are
continuous, the set X where F ∗ is to be found is infinite. Yet,
even if action duration distributions are continuous, the multiagent
dual problem can be solved near-optimally with guarantees on so-
lution quality. Essentially, our algorithm builds upon the idea in
[11] to restrict the search for F ∗ to finite number of elements in
X by pruning from X the elements F that correspond to reaching
regions of the state-space with very low probability (the expected
quality loss for executing suboptimal actions in these regions can
be bounded). Similarly to the DPFP algorithm [11], our algorithm
searches for F ∗ in set bX ⊂ X where bX differs from X in that
values of functions F in bX are restricted to integer multiples of a
given κ ∈ �+. Informally, κ creates a step function approximation
of F . Formally, bX = {F : (2), (3), (7), (8), (9)} where

F ′
(φ|m),(Q|q)(t) =

Z t

0

eFφ,Q(m)(t′) · pm(t − t′)

· E(φ|m),(Q|q)(t
′)dt′ (7)

Fφ,Q(t) = 	F ′
φ,Q(t)/κ
 · κ (8)

Fφ,Q(m)(t) = κ · k where k ∈ N (9)

We refer to the problem of finding the optimal solution cF ∗ ∈ bX
(i.e., the solution that maximizes the right-hand-side of Equation 1)
as the restricted multiagent dual problem. Similarly to DPFP, M-
DPFP solves the restricted problem by iterating over all elements
of bX (notice, that bX is finite). However, the fundamental differ-
ence between M-DPFP and DPFP is that M-DPFP solves the mul-
tiagent dual problem and must thus construct candidate solutions
(elements of bX) in a way that respects the agent interactions. Pre-
cisely, M-DPFP’s solutions must be build in a specific way, i.e.,
adding policies for action sequences in an ordering L discussed in
Section 3.1. We first show this process on an example and later
bound the total error of M-DPFP.
Fig.4 shows M-DPFP in action for the domain in Fig.1 and the
agent team interaction graph in Fig.2. Assume κ = 0.2. M-
DPFP’s iteration over all elements in bX begins with the iteration
over all the combinations of methods that agents can execute first
— for each combination, M-DPFP separately calls a recursive func-
tion FINDSPLITTING(1), to iterate over all policies where the given
combination of methods is executed first. We now focus on one
such call, where agent 1 first executes method m2 and agent 2 first
executes method m6.4

At a basic level, the goal of FINDSPLITTING(p) is to iterate over
policies for action sequences that are on or after position p on
list L, assuming that policies for action sequences that are be-
fore position p on list L are fixed. In particular, our example in
Fig.4 demonstrates how FINDSPLITTING(7) works for the action
4For this particular call to FINDSPLITTING(1), constraint 2 sets
F()()(m2)(t) = 1 and F()()(m6)(t) = 1, which then implies that
F(m,...)(∗)(t) = 0 for m �∈ {m2, m6}. For expository purposes, in
the description below we do not stress if F(∗)(∗)(t) = 0.

sequence (m6) with label 7 on the agent team interaction graph
in Fig.2. FINDSPLITTING(7) then works as follows: it first uses
constraints (3), (7) to derive F ′

(m6)(1) (solid gray line for action-
outcome sequence (m6)(1)) from F()()(m6) and E(m6),(1) (Note,
that E(m6),(1)(t) = 1 because method m6 is always enabled) and
then uses constraint (8) to approximate F ′

(m6)(1) with a step func-
tion F(m6)(1) (solid black line for for action-outcome sequence
(m6)(1))5. At this point M-DPFP knows the probability F(m6)(1)(t)
that m6 will be executed successfully before time t but does not
know what method will be chosen to be executed next, i.e., does not
know the probabilities F(m6)(1)(m4)(t), F(m6)(1)(m5)(t) (dotted
black lines for action-outcome sequence (m6)(1)). Thus, to it-
erate over all the elements in bX , M-DPFP must iterate over all
|A(m6)(1)|F(m6)(1)(Δ)/κ = 16 pairs {F(m6)(1)(m4), F(m6)(1)(m5)}
(called different splittings of F(m6)(1)). A splitting determines
the policy (see Equation 5): For the specific splitting shown, if
the execution of m6 finishes successfully at times t1, t2, t4, the
agent will choose to execute m4 next whereas if the execution of
m6 finishes successfully at time t3, the agent will choose to ex-
ecute m5 next. M-DPFP then extrapolates this point-based poli-
cies onto time interval [0, Δ] as follows: If bπ∗

(m6),(1)(t2) = m4,bπ∗
(m6),(1)(t3) = m5, and bπ∗

(m6),(1)(t) is undefined for t ∈ (t2, t3),
M-DPFP puts bπ∗

(m6),(1)(t) := m4 for all t ∈ (t1, t2).
At this point, FINDSPLITTING(7) still needs to determine how long
agent 2 should wait before starting the execution of methods m4

or m5, i.e, it needs to determine δ(m6)(1)(m4) and δ(m6)(1)(m5).
Since method m5 is always enabled, it holds that E(m5),(1)(t) = 1
and thus, G(m5),(1) is monotonically decreasing, which implies
that δ(m6)(1)(m5)(t) = 0. Now, to determine δ(m6)(1)(m4), M-
DPFP must first find E(m4),(1)(t) for all t ∈ [0, Δ] (Notice, that
E(m4),(1)(t) cannot be equal to 1 for all t ∈ [0, Δ] because it
takes a non-zero amount of time to execute method m1 that en-
ables method m4.) In our implementation of M-DPFP we estimate
E(m4),(1)(t) using a Monte Carlo sampling technique. In essence,
a partially constructed policy (fixed for the action sequences on
positions 1—6 on list L) allows us to sample the CR-DEC-MDP
from the starting state and, given enough samples, accurately es-
timate the probability that method m1 will be completed before
time t according to the partially constructed policy. We then use
Equation 6 to derive δ(m6)(1)(m4)(t). Having fixed a policy for
the action sequence (m6), FINDSPLITTING(7) executes a recur-
sive call to FINDSPLITTING(8) to iterate over all the policies for
the action sequence (m6, m5). Here, the algorithm behaves simi-
larly as for sequence (m6). However, since agent 2’s only option
here is to execute method m4, the only policy to be considered is
F(m6,m5)(11)(m4) = F(m6,m5)(11). (Similarly for the outcome
sequences (10), (01), (00).) Upon fixing the policy for the ac-
tion sequence (m6, m5) M-DPFP moves forward, i.e., FINDSPLIT-
TING(8) executes a recursive call to FINDSPLITTING(9) etc. and
this recursive policy construction process continues until FIND-
SPLITTING(30) is called at which point the complete joint policy
has been constructed.
M-DPFP intertwines policy construction with policy evaluation.
Specifically, when FINDSPLITTING(P) is called, the joint policy is
incomplete (only policies for action sequences on positions 1, ..., p−
1 on list L are known), yet, it already yields the expected reward
of

P
φ=(...,mi)∈Φ:pos(φ,L)<p;Q=(...,qi)∈{0,1}|φ| Fφ,Q(Δ) · ri · qi.

To maximize the expected reward for the complete policy, M-DPFP
must iterate over all possible policies for action sequences on posi-
tions p, ..., |L| on list L, to find the set of functions {Fφ,Q : φ ∈

5The same operations need to be performed for the action-outcome
sequence (m6)(0) in Fig.4.

Janusz Marecki, Milind Tambe • Planning with Continuous Resources for Agent Teams

1095

...

Q=(0)

Q=(00)
Q=(01)

Q=(10)

Q=(0)Q (0)

t

1

t

κ

κ κ
Δ

F'(m6)(1)

0 Δ Δ0
t1

t2 t3 t4

7

F(m6)(1)
F(m6)(1)(m4)

F(m6)(1)(m5)

8

F'(m6m5)(11)
F(m6m5)(11) =

F(m6m5)(11)(m4)

Q=(1)

Q=(11)
F'(m2)(1)

F(m2)(1)
F(m2)(1)(m1)

F(m2)(1)(m3)

Q=(1)
9

...
30

κ

Δ

1

κ

Δ

t5

Figure 4: Search for the optimal solution to the restricted multiagent dual problem

Φ; pos(φ,L) ≥ p; Q ∈ {0, 1}|φ|} that maximizes the objective
from Equation 1. The algorithm then backtracks, i.e., it considers
another incomplete policy—by picking another policy for the ac-
tion sequence on position p − 1 on list L—and repeats the policy
completion/evaluation process. M-DPFP terminates once all the
incomplete policies, i.e., all the policies for the action sequence on
position 1 on list L have been considered.
The total error of M-DPFP (the error of projection of X onto bX
combined with the error of abstraction of observation histories) can
be bounded as follows: We first borrow from [11] that the bound
on the error of projection of X onto bX is:

max
t∈[0,Δ]

|F ∗
φ,Q(t) − bF ∗

φ,Q(t)| ≤ κ|φ|

for all φ ∈ ∪nΦn and Q ∈ {0, 1}|φ| and hence (refer to Equa-
tion 3), maxt∈[0,Δ] |F ∗

φ,Q(m)(t) − bF ∗
φ,Q(m)(t)| ≤ κ|φ|. Now,

in order to bound the error of M-DPFP’s abstraction of observa-
tion histories, assume temporary that bF ∗ is the optimal solution to
the non-restricted multiagent dual problem. In such case, when-
ever bF ∗

φ,Q(m) increases for a given φ, Q (e.g. at time t ∈ [0, Δ]),
there is a probability κ chance that the agent will choose method
m ∈ Aφ,Q to be executed next. For example, there is a proba-
bility κ chance that agent 2 in Fig.4 will finish executing methods
(m6, m5) with outcomes (1, 1) at time t5 and choose m4 to be
executed next. In this context, M-DPFP’s abstraction of observa-
tion histories implies that the entire probability mass κ of a stairbF ∗

φ,Q(t) must be assigned to a unique method m ∈ Aφ,Q to be
executed next. In contrast, without the abstraction, this probability
mass κ can be split and assigned to various methods m′ ∈ Aφ,Q

that the agent can execute next, where the choice of m′ depends on
the actual times when methods from φ have been completed (that
M-DPFP’s abstraction ignores). Thus, there is at most probabil-
ity κ chance that the agent will not choose at time t the optimal
method to be executed next. Now, relaxing our assumption that bF ∗
is the optimal solution to the non-restricted multiagent dual prob-
lem, the probability that the agent will not choose at time t the
optimal method to be executed next is at most κ|φ| + κ. The total
error of M-DPFP is thus:

ε ≤
X

φ=(...,mi)∈Φ

Q∈{0,1}|φ|

κ(|φ| + 1)ri (10)

4. EXPERIMENTS
We implemented M-DPFP and evaluated it on a variety of CR-
DEC-MDPs. Since M-DPFP is the only technique available that
provides solution quality guarantees when solving arbitrary CR-
DEC-MDPs, we first examined M-DPFP’s performance alone, when
applied to the decision problem in Fig.1. Here, we fixed the method
execution durations to Normal distributions N (μ = 3, σ = 1),
set the deadline to Δ = 10 and run M-DPFP with accuracy set-
tings κ = 0.25, 0.2, 0.15, 0.1. In this context, we used the for-
mula from Equation 10 to established the upper bound on the error

Figure 5: Error bounded solutions of M-DPFP when planning

with continuous time.

of solutions returned by M-DPFP. As can be seen (Fig.5), as M-
DPFP’s accuracy increases (i.e., parameter κ decreases), the qual-
ity of M-DPFP’s solution (gray bars in Fig.5(b)) increases, while at
the same time, the theoretical error bound (calculated in terms of
κ and shown in Fig.5(b) as a solid line) decreases and approaches
the solution quality returned by M-DPFP (the error converges to 0).
In particular, M-DPFP with κ = 0.1 needs 3635 seconds to find a
solution of quality 22 that is guaranteed to be at least 50% of the
optimal quality. This result is particularly significant, as there is
currently no alternative algorithm for solving problems such as in
Fig.1 that returns error bounded solutions.
Indeed, the only way to compare M-DPFP with other globally op-
timal algorithms is to restrict our attention to CR-DEC-MDPs with
method execution durations sampled from discrete probability den-
sity functions. In essence, for such distributions the planning prob-
lems automatically become discrete (the number of CR-DEC-MDP
states is finite) and can be modeled as Decentralized POMDPs.
In this context, we implemented the SPIDER algorithm [17] con-
strained to 2 agents (where it can be transition dependent) and
compared it to M-DPFP. (Notice that M-DPFP is not specialized
for and hence may not work well for discrete distributions.) The
result of this comparison is shown in Tables 1 and 2. Here, we
gradually increase the domain size (from 4 to 12 methods), mea-
sure the runtimes and compare the quality of solutions found by
SPIDER and M-DPFP when run with various accuracy settings
(κ = 0.25, 0.2, 0.15). Across all the domains, the time horizon is
set to Δ = 10 time ticks and method execution durations are sam-
pled from a discrete version of the Normal distributions N (μ =
3, σ = 1). Note the non-apparent scale of these domains. For ex-
ample, there are 841, 807 distinct belief states when modeling our
domain with 8 methods using Decentralized POMDPs.
When run on the domain with 4 methods, both SPIDER and M-
DPFP found solutions with exactly the same quality (Table 2, row
2), yet M-DPFP completed this task up to two orders of magni-
tude faster (Table 1, row 2). In particular, M-DPFP with κ = 0.25
terminated after only 0.2s whereas SPIDER needed 21s to finish.
We hypothesize that the surprisingly high quality of M-DPFP solu-
tions for this domain is a consequence of the existence of a solution

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1096

where all the methods have a 100% chance of being completed be-
fore the deadline. Indeed, only when we consider bigger domains
(with 6+ methods) where there is no solution that guarantees that
all the methods will be completed before the deadline, M-DPFP’s
approximation starts contributing to the loss of solution quality (Ta-
ble 2, rows 3—6). However, for these domains, M-DPFP can find
high quality solutions much faster than SPIDER. In particular, for
a domain with 6 methods, M-DPFP with κ = 0.2 finds a solution
of quality 23 (less than 25% off an optimal solution) in just under
33s whereas SPIDER needs over 995s to terminate with an optimal
solution (Table 1, row 3). Finally, as we scale-up the domain size
to double-digit method numbers, we observe that, SPIDER fails to
terminate with a solution whereas M-DPFP continuous to find so-
lutions of high quality. We hence conclude that, although M-DPFP
is designed primarily for continuous time problems, it still demon-
strates superior performance in terms of its ability to quickly find
high-quality solutions when time is discretized.

Number of
methods

M-DPFP
κ = 0.25

M-DPFP
κ = 0.2

M-DPFP
κ = 0.15

SPIDER

4 0.2 0.5 6 21
6 19 33 591 995
8 17 1122 6031 26190
10 30 1281 n/a n/a
12 29 4162 n/a n/a

Table 1: Runtimes (in seconds) of M-DPFP and SPIDER

Number of
methods

M-DPFP
κ = 0.25

M-DPFP
κ = 0.2

M-DPFP
κ = 0.15

SPIDER

4 28 28 28 28
6 16 23 25 31
8 18 27 29 37
10 46 46 n/a n/a
12 42 47 n/a n/a

Table 2: Solution quality of M-DPFP and SPIDER

5. CONCLUSIONS
Many real world planning problems require distributed reasoning
with continuous resources and resource limits. Unfortunately, prior
approaches have failed to address this problem by either discretiz-
ing resources, which automatically removes quality guarantees, or
finding only locally optimal solutions to a substantially restricted
version of the problem. To address these shortcomings, we intro-
duced M-DPFP, a new algorithm for planning with continuous re-
sources in a multiagent setting. The key idea of M-DPFP is first, to
represent the planning problem as continuous resource, decentral-
ized MDP, then, to build the agent team interaction graph to quickly
identify and prune suboptimal policies and finally, to perform a for-
ward search for policies in a continuous space of probability func-
tions. Our experiments revealed that M-DPFP not only provides
solutions with quality guarantees when resources are continuous,
but also, that it finds high quality solutions and exhibits superior
performance when resources are discrete.
In terms of related work, algorithms for solving decentralized MDPs
or POMDPs [1], [2], [4], [14], [15], [16] all assume that resources
are discrete and if that is not the case, fail to provide solution qual-
ity guarantees. On the other hand, existing planners that handle
continuous resources properly [7], [8], [9], [11], [12] are tailored to
single agent systems as they fail to address the lack of global state

knowledge, a fundamental issue in decentralized planning. The re-
maining techniques [3], [10] have been very successful in leverag-
ing planning with continuous resources to the multi-agent world.
Yet, [3] assumes that agents are transition independent whereas
[10] imposes a fixed ordering of agent actions and only finds lo-
cally optimal solutions.

6. ACKNOWLEDGMENTS
This research was partially supported by the United States Depart-
ment of Homeland Security through the Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE) under grant num-
ber 2007-ST-061-000001. However, any opinions, findings, and
conclusions or recommendations in this document are those of the
authors and do not necessarily reflect views of the United States
Department of Homeland Security.

7. REFERENCES
[1] R. Becker, V. Lesser, and S. Zilberstein. Decentralized MDPs

with Event-Driven Interactions. In AAMAS, 2004.
[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Transition-Independent Dec-MDPs. In AAMAS, 2003.
[3] E. Benazera. Solving decentralized continuous Markov

decision problems with structured reward. In KI, 2007.
[4] D. S. Bernstein, S. Zilberstein, and N. Immerman. The

complexity of decentralized control of MDPs. In UAI, 2000.
[5] A. Beynier and A. Mouaddib. An iterative algorithm for

solving constrained Dec-MDPs. In AAAI, 2006.
[6] K. Decker and V. Lesser. Designing a Family of

Coordination Algorithms. ICMAS-95, January 1995.
[7] Z. Feng, R. Dearden, N. Meuleau, and R. Washington.

Dynamic programming for structured continuous MDPs. In
UAI, 2004.

[8] L. Li and M. Littman. Lazy approximation for solving
continuous finite-horizon MDPs. In AAAI, 2005.

[9] J. Marecki, S. Koenig, and M.Tambe. A fast analytical
algorithm for solving MDPs with real-valued resources. In
IJCAI, 2007.

[10] J. Marecki and M. Tambe. On opportunistic techniques for
solving Dec-MDPs with temporal constraints. In AAMAS,
2007.

[11] J. Marecki and M. Tambe. Towards faster planning with
continuous resources in stochastic domains. In AAAI, 2008.

[12] Mausam, E. Benazera, R. I. Brafman, N. Meuleau, and E. A.
Hansen. Planning with continuous resources in stochastic
domains. In IJCAI, 2005.

[13] D. Musliner, E. Durfee, J. Wu, D. Dolgov, R. Goldman, and
M. Boddy. Coordinated plan management using multiagent
MDPs. In AAAI Spring Symposium, 2006.

[14] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella.
Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. In IJCAI, 2003.

[15] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synergy of distributed
constraint optimization and POMDPs. In IJCAI, 2005.

[16] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling.
Learning to cooperate via policy search. In UAI, 2000.

[17] P. Varakantham, J. Marecki, M. Tambe, and M. Yokoo.
Letting loose a spider on a network of pomdps: Generating
quality guaranteed policies. In AAMAS, 2007.

[18] H. Younes and R. Simmons. Solving generalized semi-MDPs
using continuous phase-type distributions. In AAAI, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

